Rotavirus-induced structural and functional alterations in tight junctions of polarized intestinal Caco-2 cell monolayers.

نویسندگان

  • G Obert
  • I Peiffer
  • A L Servin
چکیده

We provide here new insights into rotavirus (RRV) pathogenicity by showing that RRV infection promotes structural and functional injuries localized at the tight junctions (TJ) in the cell-cell junctional complex of cultured polarized human intestinal Caco-2 cells forming monolayers. RRV infection resulted in a progressive increase in the paracellular permeability to [(3)H]mannitol as a function of the time postinfection. We observed a disorganization of the TJ-associated protein occludin as a function of the time postinfection, whereas distribution of the zonula adherens associated E-cadherin was not affected. These structural and functional RRV-induced TJ injuries were not accompanied by alteration in cell and monolayer integrity, as assessed by the lack of change in transepithelial membrane resistance and lactate dehydrogenase release. Finally, using the stabilizer of actin filaments Jasplakinolide, we demonstrated that the RRV-induced structural and functional alterations in TJ are independent of the RRV-induced apical F-actin rearrangements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells.

Rotaviruses infect epithelial cells of the small intestine, but the pathophysiology of the resulting severe diarrhea is incompletely understood. Histological damage to intestinal epithelium is not a consistent feature, and in vitro studies showed that intestinal cells did not undergo rapid death and lysis during viral replication. We show that rotavirus infection of Caco-2 cells caused disrupti...

متن کامل

Low-molecular-weight hyaluronan permeates through human intestinal Caco-2 cell monolayers via the paracellular pathway.

The intestinal permeability of low-molecular-weight hyaluronan (LMW-HA) was investigated by using cultured monolayers of Caco-2 cells. The amount of LMW-HA that permeated the Caco-2 monolayers was measured by a carbazole assay. The permeability of LMW-HA increased inversely with the molecular size and was dose-dependent. The transport was observed to be energy-independent, and was correlated wi...

متن کامل

Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism.

Acetaldehyde is accumulated at high concentrations in the colonic lumen following ethanol administration. Previous studies demonstrated that acetaldehyde disrupts intestinal epithelial tight junctions and increases paracellular permeability. In the present study, we investigated the role of PP2A in the acetaldehyde-induced disruption of intestinal epithelial tight junctions. Caco-2 cell monolay...

متن کامل

Afa/Dr diffusely adhering Escherichia coli C1845 infection promotes selective injuries in the junctional domain of polarized human intestinal Caco-2/TC7 cells.

The Afa/Dr diffusely adhering Escherichia coli (DAEC) C1845 strain harboring the F1845 fimbrial adhesin interacts with the brush border-associated CD55 molecule and promotes elongation of brush border microvilli resulting from rearrangement of the F-actin network. This phenomenon involves the activation of a cascade of signaling coupled to the glycosylphosphatidylinositol-anchored receptor of t...

متن کامل

Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation.

Existing in vitro models of human intestinal function commonly rely on use of established epithelial cell lines, such as Caco-2 cells, which form polarized epithelial monolayers but fail to mimic more complex intestinal functions that are required for drug development and disease research. We show here that a microfluidic 'Gut-on-a-Chip' technology that exposes cultured cells to physiological p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 74 10  شماره 

صفحات  -

تاریخ انتشار 2000